
Lecture 5

The
−→
Ω · −→∇ Operator in Curvilinear Coordinates

The transport leakage operator,
−→
Ω ·−→∇ , is not just the dot-product of

−→
Ω and the spatial

gradient of ψ in curvilinear coordinates. However, it represents ∂ψ
∂s

in all geometries. Extra

terms occur in curvilinear coordinates because the symmetry preservation in such systems

generally requires that the direction coordinate system change as a particle streams. For

instance, the directional coordinate system for 1-D spherical geometry is shown in Fig. 1.

Note that the particle direction is a function only of µ =
−→
Ω ·

−→
r

‖
−→
r ‖

. Also note that unless a

particle has a direction of µ± 1, the particle direction changes as it streams, as illustrated

in Fig. 2. Using the chain rule, it follows that

−→
Ω · −→∇ψ =

∂ψ

∂s
=

∂r

∂s

∂ψ

∂r
+

∂µ

∂s

∂ψ

∂µ
. (1)

We next derive the partial derivative, ∂r
∂s
. Using the law of cosines, it follows from Fig. 2

that

r2(s) + ∆s2 − 2r(s)∆s cos[π − θ(s)] = r2(s +∆s) . (2)

Recognizing that cos[π − θ(s)] = cos θ(s), we manipulate Eq. (2) to obtain,

r2(s +∆s)− r2(s)

∆s
=

∆s2 + 2r(s)∆sµ(s)

∆s
. (3)
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Figure 1: Direction coordinate system for 1-D sherical geometry. Note that there is only

one directional variable: µ =
−→
Ω · −→n , where

−→
n =

−→
r

‖
−→
r ‖

.

Taking the limit of Eq. (3) as ∆s → 0, we get

2r(s)
∂r

∂s
= 2r(s)µ . (4)

Solving Eq. (4) for the desired partial derivative, we get

∂r

∂s
= µ . (5)
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Figure 2: Illustration of change in direction coordinate as a particle streams in 1-D spherical

geometry. Note that µ = cos θ =
−→
n =

−→
r

‖
−→
r ‖

.

We next derive the partial derivative, ∂µ
∂s
. Using the law of signs, it follows from Fig. 2

that

r(s +∆s)

sin[π − θ(s)]
=

r(s)

sin[θ(s +∆s)]
. (6)

Recognizing that sin(π − x) = sin x for any angle x, we manipulate Eq. (6) to obtain

r(s +∆s) sin[θ(s +∆s)] = r(s) sin[θ(s)] . (7)

[
r(s) +

∂r

∂s
∆s

] [
sin[θ(s)] + cos[θ(s)]

∂θ

∂s
∆s

]
= r(s) sin[θ(s)] ,

r(s) sin[θ(s)] + r(s) cos[θ(s)]
∂θ

∂s
∆s + sin[θ(s)]

∂r

∂s
∆s + O(∆s2) = r(s) sin[θ(s)] ,

r(s) cos[θ(s)]
∂θ

∂s
∆s = − sin[θ(s)]

∂r

∂s
∆s + O(∆s2) , (8)
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Recognizing that ∂r
∂s

= cos[θ(s)], we further manipulate Eq. (8) to obtain

r(s)
∂θ

∂s
= − sin[θ(s)] . (9)

Since µ = cos θ, it follows that ∂µ
∂θ

= − sin θ, and further that

∂µ

∂s
= − sin θ

∂θ

∂s
. (10)

Dividing Eq. (9) by r(s) and multiplying it by − sin[θ(s)], we obtain

− sin[θ(s)]
∂θ

∂s
=

1

r(s)
sin2[θ(s)] . (11)

Substituting from Eq. (10) into Eq. (11), we obtain the desired quantity:

∂µ

∂s
=

1

r
(1− µ2) . (12)

Substituting from Eqs. (5) and (12) into Eq. (1), we obtain the leakage operator for 1-D

spherical geometry:

−→
Ω · −→∇ = µ

∂ψ

∂r
+

1

r
(1− µ2)

∂ψ

∂µ
. (13)

Note that the angular derivative term disappears at µ±1, which is appropriate since parti-

cles in these two directions do not change their direction as they stream. Because particles

in directions other than µ = ±1 change their direction as they stream, the leakage operator

contributes both a source and a sink to the differential phase-space volume associated with

directions about µ. To see this, we must express Eq. (13) in an equivalent conservative
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form:

−→
Ω · −→∇ =

µ

r2

∂

∂r
r2ψ +

1

r

∂

∂µ
(1− µ2)ψ . (14)

Using Eq. (14), the 1-D spherical-geometry monoenergetic transport equation with isotropic

scattering and an isotropic distributed source becomes

µ

r2

∂

∂r
r2ψ +

1

r

∂

∂µ
(1− µ2)ψ + σtψ =

1

4π
σsφ +

1

4π
Q0 . (15)

Integrating Eq. (15) over a finite phase-space volume characterized by radii, r1 and r2, and

cosines, µ1 and µ2, we get

4πr2
2 〈µψ(r2, µ) 〉∆Ω − 4πr2

1 〈µψ(r1, µ) 〉∆Ω +

2π(1− µ2
2)

〈
r−1ψ(r, µ2)

〉
V
− 2π(1− µ2

1)
〈
r−1ψ(r, µ1)

〉
V
+

〈σtψ 〉∆P = 〈σsψ 〉V + 〈Q0 〉V . (16)

where 〈·〉V implies integration over the volume associated with the interval [r1, r2], 〈·〉∆Ω

implies integration over the solid angle associated with the interval, [µ1, µ2], and 〈·〉∆P

implies integration over both, i.e., over the phase-space volume. Without loss of generality,

we assume that µ1 and µ2 are both positive, with µ2 < 1. Under this assumption, we can

re-arrange Eq. (16) by placing sinks on the left side of the equation, and sources on the

right side:

4πr2
2 〈µψ(r2, µ) 〉∆Ω + 2π(1− µ2

2)
〈
r−1ψ(r, µ2)

〉
V
+ 〈σtψ 〉∆P =
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4πr2
1 〈µψ(r1, µ) 〉∆Ω + 2π(1− µ2

1)
〈
r−1ψ(r, µ1)

〉
V
+ 〈σsψ 〉V + 〈Q0 〉V . (17)

The first term on the left side of Eq. (17) represents the rate at which particles flow out

of V through the surface associated with r2. The second term on the left side of Eq. (17)

represents the rate at which particles flow out of ∆Ω due to the angular change associated

with streaming. The third term on the left side of Eq. (17) represents the rate at which

particles are removed from ∆P by absorption and scattering. The first term on the right

side of Eq. (17) represents the rate at which particles flow into V through the surface

associated with r1. The second term on the right side of Eq. (17) represents the rate at

which particles flow into ∆Ω due to the angular change associated with streaming. The

third term on the right side of Eq. (17) represents the rate at which particles scatter into

∆P . The fourth term represents the rate at which particles are created within ∆P .

Note that if we integrate Eq. (15) over all directions, the balance equation contains no

contributions from the angular derivative term:

1

r2

∂

∂r
r2J + σaφ = Q0 . (18)

Furthermore, Eq. (18) can be written in a general form as

−→
∇·−→J + σaφ = Q0 . (19)

where
−→
∇· is the standard spatial divergence operator. This is the case in all geometries.
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